Basic of Logarithms
hard

ધારો કે $\quad \sum \limits_{n=0}^{\infty} \frac{n^3((2 n) !)+(2 n-1)(n !)}{(n !)((2 n) !)}=a e+\frac{b}{e}+c,$  $a, b, c \in Z$ પુર્ણાકો છે.$e=\sum_{n=0}^{\infty} \frac{1}{n !} $ હોય તો $a^2-b+c$ ની કિમંત મેળવો.

A

$25$

B

$24$

C

$23$

D

$26$

(JEE MAIN-2023)

Solution

$\sum \limits_{n=0}^{\infty} \frac{n^3((2 n) !)+(2 n-1)(n !)}{(n !)((2 n) !)}$

$=\sum \limits_{n=0}^{\infty} \frac{1}{(n-3) !}+\sum \limits_{n=0}^{\infty} \frac{3}{(n-2) !}$

$+\sum \limits_{n=0}^{\infty} \frac{1}{(n-1) !}+\sum \limits_{n=0}^{\infty} \frac{1}{(2 n-1) !}-\sum \limits_{n=0}^{\infty} \frac{1}{(2 n) !}$

$=e+3 e+e+\frac{1}{2}\left(e-\frac{1}{e}\right)-\frac{1}{2}\left(e+\frac{1}{e}\right)$

$=5 e-\frac{1}{e}$

$a^2-b+c=26$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.