- Home
- Standard 11
- Mathematics
Basic of Logarithms
medium
If ${x^{x\root 3 \of x }} = {(x\,.\,\root 3 \of x )^x},$ then $x =$
A
$64/27$
B
$-1$
C
$0$
D
None of these
Solution
(a) ${x^{x.{x^{1/3}}}} = {(x\,.\,{x^{1/3}})^x}$$ \Rightarrow $${x^{{x^{1 + {1 \over 3}}}}} = {\left( {{x^{1 + {1 \over 3}}}} \right)^x}$
==> ${x^{{x^{4/3}}}} = {\left( {{x^{4/3}}} \right)^x}$= ${x^{{x^{4/3}}}} = {x^{{4 \over 3}x}} \Rightarrow {x^{4/3}} = {4 \over 3}x$
$\Rightarrow {x^{\frac{4}{3} – 1}} = \frac{4}{3} \Rightarrow {x^{1/3}} = \frac{4}{3}$
$\therefore x = {\left( {{4 \over 3}} \right)^3} = {{64} \over {27}}$
Also $x=1$ is an obvious solution .
Standard 11
Mathematics