જો $x = {\log _3}5,\,\,\,y = {\log _{17}}25,$ તો આપેલ પૈકી ક્યૂ વિધાન સત્ય છે ?
$x < y$
$x = y$
$x > y$
એકપણ નહીં
જો ${\log _e}\left( {{{a + b} \over 2}} \right) = {1 \over 2}({\log _e}a + {\log _e}b)$, તો $a$ અને $b$ વચ્ચેનો સંબંધ મેળવો.
જો ${\log _{1/\sqrt 2 }}\sin x > 0,x \in [0,\,\,4\pi ],$ તો $ x$ ની કેટલી કિમતો મળે કે જે ${\pi \over 4}$ નો ગુણિત છે.
જો ${\log _{0.3}}(x - 1) < {\log _{0.09}}(x - 1),$ તો $x$ નો અંતરાલ મેળવો.
${\log _4}18 = . . . .$
${2^{{{\log }_{\sqrt 2 }}(x - 1)}} > x + 5$ નું સમાધાન કરે તેવી $x$ ની વાસ્તવિક કિમતોનો ગણ મેળવો.