If $\frac{{2{z_1}}}{{3{z_2}}}$ is a purely imaginary number, then $\left| {\frac{{{z_1} - {z_2}}}{{{z_1} + {z_2}}}} \right|$ =

  • A

    $1.5$

  • B

    $1$

  • C

    $2/3$

  • D

    $4/9$

Similar Questions

For a non-zero complex number $z$, let $\arg ( z )$ denote the principal argument with $-\pi<\arg ( z ) \leq \pi$. Then, which of the following statement (s) is (are) $FALSE$ ?

$(A)$ $\arg (-1- i )=\frac{\pi}{4}$, where $i =\sqrt{-1}$

$(B)$ The function $f: R \rightarrow(-\pi, \pi]$, defined by $f(t)=\arg (-1+i t)$ for all $t \in R$, is continuous at all points of $R$, where $i=\sqrt{-1}$

$(C)$ For any two non-zero complex numbers $z_1$ and $z_2$, $\arg \left(\left(\frac{z_1}{z_2}\right)-\arg \left(z_1\right)+\arg \left(z_2\right)\right.$ is an integer multiple of $2 \pi$.

$(D)$ For any three given distinct complex numbers, $z_1, z_2$ and $z_3$, the locus of the point $z$ satisfying the condition $\arg \left(\frac{\left( z - z _1\right)\left( z _2- z _3\right)}{\left( z - z _3\right)\left( z _2- z _1\right)}\right)=\pi$, lies on a straight line

  • [IIT 2018]

The set of all $\alpha  \in R$, for which $w = \frac{{1 + \left( {1 - 8\alpha } \right)z}}{{1 - z}}$ is a purely imaginary number, for all $z \in C$ satisfying $\left| z \right| = 1$ and ${\mathop{\rm Re}\nolimits} \,z \ne 1$,  is

  • [JEE MAIN 2018]

If $(3 + i)z = (3 - i)\bar z,$then complex number $z$ is

If $|{z_1}|\, = \,|{z_2}|$ and $arg\,\,\left( {\frac{{{z_1}}}{{{z_2}}}} \right) = \pi $, then ${z_1} + {z_2}$ is equal to

If ${z_1}$ and ${z_2}$ are two complex numbers, then $|{z_1} - {z_2}|$ is