જો ${z_1}$ અને ${z_2}$ બે સંકર સંખ્યા હોય ,તો $|{z_1} + {z_2}{|^2}$ $ + |{z_1} - {z_2}{|^2}$ =...
$2|{z_1}{|^2}\,|{z_2}{|^2}$
$2|{z_1}{|^2} + \,2\,\,|{z_2}{|^2}$
$|{z_1}{|^2} + \,|{z_2}{|^2}$
$2|{z_1}|\,\,|{z_2}|$
બધા $z \in C$ માટે જો $\left| z \right| = 1$ અને ${\mathop{\rm Re}\nolimits} \,z \ne 1$ હોય તો $\alpha \in R$ ના ઉકેલગણ મેળવો કે જેથી $w = \frac{{1 + \left( {1 - 8\alpha } \right)z}}{{1 - z}}$ એ શુધ્ધ કાલ્પનિક સંખ્યા થાય.
સમીકરણ $z$, $| z |^2 -(z + \bar{z}) + i(z - \bar{z})$ + $2$ = $0$ ના ઉકેલો મેળવો
$(i = \sqrt{-1})$
જો $z$ એ સંકર સંખ્યા હોય અને $\frac{{z - 1}}{{z + 1}}$ એ શુદ્ધ કાલ્પનિક સંખ્યા હોય તો . . . .
જો $z=\frac{1}{2}-2 i$ એ એવી છે કે જેથી $|z+1|=\alpha z+\beta(1+i)$ થાય $i=\sqrt{-1}$ અને $\alpha, \beta \in \mathbb{R}$,તો $\alpha+\beta=$.....................
જો સંકર સંખ્યા $z$ માટે $x + \sqrt 2 \,\,\left| {z + 1} \right|\,+ \,i\, = \,0$ હોય તો $\left| z \right|$ ની કિમત મેળવો.