If ${z_1}$ and ${z_2}$ are two complex numbers, then $|{z_1} - {z_2}|$ is
$ \ge \,|{z_1}| - |{z_2}|$
$ \le \,|{z_1}| - |{z_2}|$
$ \ge \,|{z_1}| + |{z_2}|$
$ \le \,|{z_2}| - |{z_1}|$
If $arg\,z < 0$ then $arg\,( - z) - arg\,(z)$ is equal to
Consider the following two statements :
Statement $I$ : For any two non-zero complex numbers $\mathrm{z}_1, \mathrm{z}_2$
$\left(\left|z_1\right|+\left|z_2\right|\right)\left|\frac{z_1}{\left|z_1\right|}+\frac{z_2}{\left|z_2\right|}\right| \leq 2\left(\left|z_1\right|+\left|z_2\right|\right)$ and
Statement $II$ : If $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are three distinct complex numbers and a, b, c are three positive real numbers such that $\frac{a}{|y-z|}=\frac{b}{|z-x|}=\frac{c}{|x-y|}$, then
$\frac{\mathrm{a}^2}{\mathrm{y}-\mathrm{z}}+\frac{\mathrm{b}^2}{\mathrm{z}-\mathrm{x}}+\frac{\mathrm{c}^2}{\mathrm{x}-\mathrm{y}}=1$
Between the above two statements,
The modulus and amplitude of $\frac{{1 + 2i}}{{1 - {{(1 - i)}^2}}}$ are
Let $\alpha=8-14 i , A=\left\{ z \in C : \frac{\alpha z -\bar{\alpha} \overline{ z }}{ z ^2-(\overline{ z })^2-112 i }=1\right\}$ and $B =\{ z \in C :| z +3 i |=4\}$ Then $\sum_{z \in A \cap B}(\operatorname{Re} z-\operatorname{Im} z)$ is equal to $...............$.
The product of two complex numbers each of unit modulus is also a complex number, of