If ${z_1}$ and ${z_2}$ are two complex numbers, then $|{z_1} - {z_2}|$ is

  • A

    $ \ge \,|{z_1}| - |{z_2}|$

  • B

    $ \le \,|{z_1}| - |{z_2}|$

  • C

    $ \ge \,|{z_1}| + |{z_2}|$

  • D

    $ \le \,|{z_2}| - |{z_1}|$

Similar Questions

The conjugate of the complex number $\frac{{2 + 5i}}{{4 - 3i}}$ is

Find the modulus and argument of the complex number $\frac{1+2 i}{1-3 i}$

Find the modulus of $\frac{1+i}{1-i}-\frac{1-i}{1+i}$

Let $z_k=\cos \left(\frac{2 k \pi}{10}\right)+ i \sin \left(\frac{2 k \pi}{10}\right) ; k =1,2, \ldots 9$.

List $I$ List $II$
$P.$ For each $z_k$ there exists a $z_j$ such that $z_k \cdot z_j=1$ $1.$ True
$Q.$ There exists a $k \in\{1,2, \ldots ., 9\}$ such that $z_{1 .} . z=z_k$ has no solution $z$ in the set of complex numbers. $2.$ False
$R.$ $\frac{\left|1-z_1\right|\left|1-z_2\right| \ldots . .\left|1-z_9\right|}{10}$ equals $3.$ $1$
$S.$ $1-\sum_{k=1}^9 \cos \left(\frac{2 k \pi}{10}\right)$ equals $4.$ $2$

Codes: $ \quad P \quad Q \quad R \quad S$

  • [IIT 2014]

If $z = 1 - \cos \alpha + i\sin \alpha $, then $amp \ z$=