यदि ${z_1}$ तथा ${z_2}$ दो सम्मिश्र संख्याएँ हैं तब $|{z_1} - {z_2}|$

  • A

    $ \ge \,|{z_1}| - |{z_2}|$

  • B

    $ \le \,|{z_1}| - |{z_2}|$

  • C

    $ \ge \,|{z_1}| + |{z_2}|$

  • D

    $ \le \,|{z_2}| - |{z_1}|$

Similar Questions

$arg\,(5 - \sqrt 3 i) = $

माना $z$ एक ऐसी सम्मिश्र संख्या है, कि $\left|\frac{ z - i }{ z +2 i }\right|=1$ है तथा $|z|=\frac{5}{2}$ है, तो $|z+3 i|$ का मान है 

  • [JEE MAIN 2020]

यदि $z_1$ तथा ${z_2}$ दो सम्मिश्र संख्याएँ इस प्रकार हैं कि $\left| {\frac{{{z_1} - {z_2}}}{{{z_1} + {z_2}}}} \right| = 1$ तथा $i{z_1} = k{z_2}$, जहाँ $k \in R$, तब${z_1} - {z_2}$ तथा ${z_1} + {z_2}$ के मध्य कोण है

माना कि $z$ एक शून्येतर काल्पनिक भाग (non-zero imaginary part) वाली सम्मिश्र संख्या (complex number) है। यदि $\frac{2+3 z+4 z^2}{2-3 z+4 z^2}$ एक वास्तविक संख्या (real number) है, तब $|z|^2$ का मान. . . . .है।

  • [IIT 2022]

माना $z$ व$w$ दो अशून्य सम्मिश्र संख्यायें इस प्रकार हैं कि $|z|\, = \,|w|$ व $arg\,z + arg\,w = \pi $, तो $z$ बराबर है

  • [AIEEE 2002]