यदि $|z|\, = 1,(z \ne - 1)$तथा $z = x + iy,$तब $\left( {\frac{{z - 1}}{{z + 1}}} \right)$=
पूर्णत: वास्तविक
पूर्णत: अधिकल्पित
शून्य
अपरिभाषित
$\frac{(3-2 i)(2+3 i)}{(1+2 i)(2-i)}$ का संयुग्मी ज्ञात कीजिए।
माना कि $|z|^3+2 z^2+4 \bar{z}-8=0$ को संतुष्ट करने वाली एक सम्मिश्र संख्या (complex number) $z$ है, जहाँ $\bar{z}$ सम्मिश्र संख्या $z$ का संयुग्मी (conjugate) है। माना कि $z$ का काल्पनिक भाग (imaginary part) अशून्य (nonzero) है।
List-$I$ की प्रत्येक प्रविष्टि (entry) का List-$II$ की सही प्रविष्टियों (entries) से मिलान कीजिये।
List-$I$ | List-$II$ |
($P$) $|z|^2$ के बराबर हैं | ($1$) $12$ |
($Q$) $|z-\bar{z}|^2$ के बराबर हैं | ($2$) $4$ |
($R$) $|z|^2+|z+\bar{z}|^2$ के बराबर हैं | ($3$) $8$ |
($S$) $|z+1|^2$ के बराबर हैं | ($4$) $10$ |
($5$) $7$ |
सही विकल्प है:
यदि $z$ एक सम्मिश्र संख्या हो, तो $z.\,\overline z = 0$ यदि और केवल यदि
यदि $|z - 25i| \le 15$, तब $|\max .amp(z) - \min .amp(z)| = $
इकाई मापांकों की दो सम्मिश्र संख्याओं का गुणन होगा