4-1.Complex numbers
easy

यदि  $|z|\, = 1,(z \ne  - 1)$तथा $z = x + iy,$तब $\left( {\frac{{z - 1}}{{z + 1}}} \right)$=

A

पूर्णत: वास्तविक

B

पूर्णत: अधिकल्पित

C

शून्य

D

अपरिभाषित

Solution

(b) $z = x + iy \Rightarrow |z{|^2} = {x^2} + {y^2} = 1$        …..$(i)$

अब, $\left( {\frac{{z – 1}}{{z + 1}}} \right) = \frac{{(x – 1) + iy}}{{(x + 1) + iy}} \times \frac{{(x + 1) – iy}}{{(x + 1) – iy}}$

 $ = \frac{{({x^2} + {y^2} – 1) + 2iy}}{{{{(x + 1)}^2} + {y^2}}}$$ = \frac{{2iy}}{{{{(x + 1)}^2} + {y^2}}}$    [समीकरण $(i)$ से]

 अत: $\left( {\frac{{z – 1}}{{z + 1}}} \right)$पूर्णत: काल्पनिक है।

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.