यदि दो सम्मिश्र संख्याओं के मापांक इकाई से कम हैं, तो इन सम्मिश्र संख्याओं के योग का मापांक होगा
इकाई से कम
इकाई से अधिक
इकाई के बराबर
कोई भी
यदि $Z$ तथा $W$ दो ऐसी सम्मिश्र संख्याएँ है कि $| ZW |=1$ तथा $\arg ( z )-\arg ( w )=\frac{\pi}{2}$, तो
यदि ${z_1} = a + ib$ व ${z_2} = c + id$ सम्मिश्र संख्यायें इस प्रकार हैं कि $|{z_1}| = |{z_2}| = 1$ व $R({z_1}\overline {{z_2}} ) = 0,$ तो सम्मिश्र संख्याओं का युग्म ${w_1} = a + ic$ व ${w_2} = b + id$ संतुष्ट करता है
यदि $|z|\, = 1$ तथा $\omega = \frac{{z - 1}}{{z + 1}}$ (जहाँ $z \ne - 1)$, तब ${\mathop{\rm Re}\nolimits} (\omega )$का मान होगा
यदि $z = x + iy$ समीकरणों $| z |-2=0$ तथा $|z-i||z+5 i|=0$ को संतुष्ट करता है, तो
यदि ${z_1}$ तथा ${z_2}$ कोई दो सम्मिश्र संख्यायें हों, तब $|{z_1} + {z_2}{|^2}$ $ + |{z_1} - {z_2}{|^2}$ =