यदि दो सम्मिश्र संख्याओं के मापांक इकाई से कम हैं, तो इन सम्मिश्र संख्याओं के योग का मापांक होगा
इकाई से कम
इकाई से अधिक
इकाई के बराबर
कोई भी
(d) यह शून्य से बड़ा, बराबर या छोटा हो सकता है
यदि $\mathrm{z}=\mathrm{x}+\mathrm{i} y, \mathrm{xy} \neq 0$, समीकरण $z^2+i \bar{z}=0$, को संतुष्ट करता है, तो $\left|z^2\right|$ बराबर है :
यदि ${z_1}$ तथा ${z_2}$ कोई दो सम्मिश्र संख्यायें हों, तब $|{z_1} + {z_2}{|^2}$ $ + |{z_1} – {z_2}{|^2}$ =
यदि ${z_1} = 1 + 2i$ और ${z_2} = 3 + 5i$, तब${\mathop{\rm Re}\nolimits} \,\left( {\frac{{{{\bar z}_2}{z_1}}}{{{z_2}}}} \right)$=
यदि $z_1$ तथा ${z_2}$ दो सम्मिश्र संख्याएँ इस प्रकार हैं कि $\left| {\frac{{{z_1} – {z_2}}}{{{z_1} + {z_2}}}} \right| = 1$ तथा $i{z_1} = k{z_2}$, जहाँ $k \in R$, तब${z_1} – {z_2}$ तथा ${z_1} + {z_2}$ के मध्य कोण है
यदि $\alpha$ और $\beta$ भिन्न सम्मिश्र संख्याएँ हैं जहाँ $|\beta|=1,$ तब $\left|\frac{\beta-\alpha}{1-\bar{\alpha} \beta}\right|$ का मान ज्ञात कीजिए
Confusing about what to choose? Our team will schedule a demo shortly.