यदि $|z|\, = 4$और $arg\,\,z = \frac{{5\pi }}{6},$तो $z = $
$2\sqrt 3 - 2i$
$2\sqrt 3 + 2i$
$ - 2\sqrt 3 + 2i$
$ - \sqrt 3 + i$
यदि $z = x + iy$ तो $|z - 5|$का मान है
माना कि $\bar{z}$ एक सम्मिश्र संख्या (complex number) $z$ के सम्मिश्र संयुग्मी (complex conjugate) को निरूपित करता है एवं $i=\sqrt{-1}$ है। सम्मिश्र संख्याओं के सम्मुचय (set of complex numbers) में, समीकरण $\bar{z}-z^2=i\left(\bar{z}+z^2\right)$ के भिन्न मूलों (distinct roots) की संख्या. . . . . .है।
यदि ${z_1}$ तथा ${z_2}$ कोई दो सम्मिश्र संख्यायें हों, तब $|{z_1} + {z_2}{|^2}$ $ + |{z_1} - {z_2}{|^2}$ =
यदि $(3 + i)z = (3 - i)\bar z,$ तब सम्मिश्र संख्या $z$ है
किन्हीं दो सम्मिश्र संख्याओं ${z_1}$,${z_2}$तथा वास्तविक संख्याओं $a$ तथा $b$ के लिये $|(a{z_1} - b{z_2}){|^2} + |(b{z_1} + a{z_2}){|^2} = $