4-1.Complex numbers
easy

यदि  $|{z_1} + {z_2}| = |{z_1} - {z_2}|$, तब ${z_1}$तथा ${z_2}$ के कोणांकों में अन्तर है  

A

$\frac{\pi }{4}$

B

$\frac{\pi }{3}$

C

$\frac{\pi }{2}$

D

$0$

Solution

(c) दिये गये सम्बन्धों का वर्ग करने पर

${x_1}{x_2} + {y_1}{y_2} = 0$

अब $amp\,\,{z_1} – amp\,\,{z_2} = {\tan ^{ – 1}}\frac{{{y_1}}}{{{x_1}}} – {\tan ^{ – 1}}\frac{{{y_2}}}{{{x_2}}}$

 $ = {\tan ^{ – 1}}\frac{{\frac{{{y_1}}}{{{x_1}}} – \frac{{{y_2}}}{{{x_2}}}}}{{1 + \frac{{{y_1}{y_2}}}{{{x_1}{x_2}}}}} = {\tan ^{ – 1}}\frac{{{y_1}{x_2} – {y_2}{x_1}}}{{{x_1}{x_2} + {y_1}{y_2}}}$$ = {\tan ^{ – 1}}\infty  = \frac{\pi }{2}$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.