If $|{z_1} + {z_2}| = |{z_1} - {z_2}|$, then the difference in the amplitudes of ${z_1}$ and ${z_2}$ is
$\frac{\pi }{4}$
$\frac{\pi }{3}$
$\frac{\pi }{2}$
$0$
Argument and modulus of $\frac{{1 + i}}{{1 - i}}$ are respectively
Let $z$, $w \in C$ satisfy ${z^2} + \bar w = z$ and ${w^2} + \bar z = w$ then number of ordered pairs of complex numbers $(z, w)$ is equal to
The amplitude of $\frac{{1 + \sqrt 3 i}}{{\sqrt 3 + 1}}$ is
Lets $S=\{z \in C:|z-1|=1$ and $(\sqrt{2}-1)(z+\bar{z})-i(z-\bar{z})=2 \sqrt{2}\}$. Let $\mathrm{z}_1, \mathrm{z}_2$ $\in S$ be such that $\left|z_1\right|=\max _{z \in S}|z|$ and $\left|z_2\right|=\min _{z \in S}|z|$. Then $\left|\sqrt{2} z_1-z_2\right|^2$ equals :
The complex numbers $sin\ x + i\ cos\ 2x$ and $cos\ x\ -\ i\ sin\ 2x$ are conjugate to each other, for