If $|{z_1} + {z_2}| = |{z_1} - {z_2}|$, then the difference in the amplitudes of ${z_1}$ and ${z_2}$ is

  • A

    $\frac{\pi }{4}$

  • B

    $\frac{\pi }{3}$

  • C

    $\frac{\pi }{2}$

  • D

    $0$

Similar Questions

If $z$ is a complex number such that  $\left| z \right| \ge 2$ , then the minimum value of $\left| {z + \frac{1}{2}} \right|$: 

  • [JEE MAIN 2014]

The conjugate of the complex number $\frac{{2 + 5i}}{{4 - 3i}}$ is

If $z$ is a complex number, then the minimum value of $|z| + |z - 1|$ is

Let $S$ be the set of all complex numbers $z$ satisfying $\left|z^2+z+1\right|=1$. Then which of the following statements is/are $TRUE$?

$(A)$ $\left|z+\frac{1}{2}\right| \leq \frac{1}{2}$ for all $z \in S$  $(B)$ $|z| \leq 2$ for all $z \in S$

$(C)$ $\left|z+\frac{1}{2}\right| \geq \frac{1}{2}$ for all $z \in S$  $(D)$ The set $S$ has exactly four elements

  • [IIT 2020]

The product of two complex numbers each of unit modulus is also a complex number, of