4-1.Complex numbers
medium

જો $z$ અને $\omega $ એ બે શૂન્યતર સંકર સંખ્યા છે કે જેથી $|z\omega |\, = 1$ અને $arg(z) - arg(\omega ) = \frac{\pi }{2},$ તો $\bar z\omega $ મેળવો.

A

$1$

B

$-1$

C

$i$

D

$-i$

(AIEEE-2003)

Solution

(d) $|z|\,|\omega |\, = 1$ ……$(i)$
and $arg\,\left( {\frac{z}{\omega }} \right) = \frac{\pi }{2}\,\,\, \Rightarrow \,\,\frac{z}{\omega } = i$ $⇒$  $\left| {\frac{z}{\omega }} \right| = 1$ …..$(ii)$
From equation $(i) $ and $(ii)$
$|z|\, = \,|\omega |\, = 1$ and $\frac{z}{\omega } + \frac{{\bar z}}{{\bar \omega }} = 0;\,\,\,z\bar \omega + \bar z\omega = 0$
$\bar z\omega = – z\bar \omega = \frac{{ – z}}{\omega }\bar \omega \,\omega $; $\bar z\omega = – \,i\,|\omega {|^2} = – i.$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.