If ${z_1} = 1 + 2i$ and ${z_2} = 3 + 5i$, and then $\operatorname{Re} \left( {\frac{{{{\bar z}_2}{z_1}}}{{{z_2}}}} \right)$ is equal to

  • A

    $\frac{{ - 31}}{{17}}$

  • B

    $\frac{{17}}{{22}}$

  • C

    $\frac{{ - 17}}{{31}}$

  • D

    $\frac{{22}}{{17}}$

Similar Questions

The real value of $\theta$ for which the expression $\frac{{1 + i\,\cos \theta }}{{1 - 2i\cos \theta }}$ is a real number is $\left( {n \in I} \right)$ 

$z_1$ and $z_2$ are two complex numbers such that $|z_1 + z_2|$ = $1$ and $\left| {z_1^2 + z_2^2} \right|$ = $25$ , then minimum value of $\left| {z_1^3 + z_2^3} \right|$ is

If $z = 1 - \cos \alpha + i\sin \alpha $, then $amp \ z$=

If $|{z_1} + {z_2}| = |{z_1} - {z_2}|$, then the difference in the amplitudes of ${z_1}$ and ${z_2}$ is

If for $z=\alpha+i \beta,|z+2|=z+4(1+i)$, then $\alpha+\beta$ and $\alpha \beta$ are the roots of the equation

  • [JEE MAIN 2023]