4-1.Complex numbers
easy

If ${z_1} = 1 + 2i$ and ${z_2} = 3 + 5i$, and then $\operatorname{Re} \left( {\frac{{{{\bar z}_2}{z_1}}}{{{z_2}}}} \right)$ is equal to

A

$\frac{{ - 31}}{{17}}$

B

$\frac{{17}}{{22}}$

C

$\frac{{ - 17}}{{31}}$

D

$\frac{{22}}{{17}}$

Solution

(d) Given ${z_1} = 1 + 2i$, ${z_2} = 3 + 5i$ 
$\frac{{{{\bar z}_2}{z_1}}}{{{z_2}}} = \frac{{(3 – 5i)\,(1 + 2i)}}{{(3 + 5i)}} = \frac{{13 + i}}{{3 + 5i}}$
= $\frac{{13 + i}}{{3 + 5i}} \times \frac{{3 – 5i}}{{3 – 5i}} = \frac{{44 – 62i}}{{34}}$
Then $\operatorname{Re} \left( {\frac{{{{\bar z}_2}{z_1}}}{{{z_2}}}} \right) = \frac{{22}}{{17}}$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.