4-1.Complex numbers
easy

જો $(3 + i)z = (3 - i)\bar z,$તો સંકર સંખ્યા $z$ મેળવો.

A

$x\,(3 - i),\,x \in R$

B

$\frac{x}{{3 + i}},\,x \in R$

C

$x(3 + i),\,x \in R$

D

$x( - 3 + i),\,x \in R$

Solution

(a) Given : $(3 + i)z = (3 – i)\bar z$
Let $z = x(3 – i)$, $x \in R$
$L.H.S. =$ $(3 + i)z$ = $(3 + i)\,x\,(3 – i)$
= $x\,(3 + i)\,(3 – i)\, = x\,[{(3)^2} + {1^2}] = 10x$
$R.H.S. = $$(3 – i)\bar z = (3 – i)\,x\,(3 + i) = x\,[{3^2} + {1^2}] = 10x$
Hence, $L.H.S. = R.H.S.$
$z = x(3 – i)$ satisfies the equation, then $z = x(3 – i)$, where $x$ is a real number.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.