જો ${(\sqrt 8 + i)^{50}} = {3^{49}}(a + ib)$ તો ${a^2} + {b^2}$ = . . .
$3$
$8$
$9$
$\sqrt 8 $
જો $Z$ અને $W$ એ સંકર સંખ્યા હોય જેથી $\left| Z \right| = \left| W \right|,$ અને arg $Z$ એ $Z$ નો મુખ્ય કોણાંક બતાવતું હોય.
વિધાન $1:$ જો arg $Z+$ arg $W = \pi ,$ તો $Z = -\overline W $.
વિધાન $2:$ $\left| Z \right| = \left| W \right|,$ $\Rightarrow $ arg $Z-$ arg $\overline W = \pi .$
જો $z,w$ એ સંકર સંખ્યા છે કે જેથી $\overline z + i\overline w = 0$ અને $arg\,\,zw = \pi $ તો arg z મેળવો.
સમીકરણ $\left| {z + \frac{2}{z}} \right| = 2$ નું સમાધાન કરે છે તો $|z|$ ની મહતમ કિમત મેળવો.
જો $|{z_1}|\, = \,|{z_2}|$ અને $arg\,\,\left( {\frac{{{z_1}}}{{{z_2}}}} \right) = \pi $, તો ${z_1} + {z_2}$ = . ..
સમીકરણ $\left| {\frac{{z - 12}}{{z - 8i}}} \right| = \frac{5}{3},\left| {\frac{{z - 4}}{{z - 8}}} \right| = 1$ નું સમાધાન કરે તેવી સંકર સંખ્યા $Z$ મેળવો.