यदि ${z_1},{z_2}$एवं ${z_3}$तीन सम्मिश्र संख्याऐं इस प्रकार हैं कि $|{z_1}|\, = \,|{z_2}|\, = \,|{z_3}|\, = $$\left| {\frac{1}{{{z_1}}} + \frac{1}{{{z_2}}} + \frac{1}{{{z_3}}}} \right| = 1\,,$ तब${\rm{ }}|{z_1} + {z_2} + {z_3}|$ का मान है
एक के बराबर
एक से कम
तीन से अधिक
तीन के बराबर
माना सभी सम्मिश्र संख्याओं $z$ का समुच्चय $S$ है जो $\left|z^2+z+1\right|=1$ को संतुष्ट करता है। तब निम्न में से कौनसा/कौनसे कथन सत्य होगा/होंगे?
$(A)$ सभी $z \in S$ के लिये $\left| z +\frac{1}{2}\right| \leq \frac{1}{2}$ होगा।
$(B)$ सभी $z \in S$ के लिये $| z | \leq 2$ होगा।
$(C)$ सभी $z \in S$ के लिये $\left| z +\frac{1}{2}\right| \geq \frac{1}{2}$ होगा।
$(D)$ समुच्चय $S$ में ठीक चार अवयव होंगे।
माना कि$z$ एक सम्मिश्र संख्या है, तो समीकरण ${z^4} + z + 2 = 0$निम्न प्रकार का मूल नहीं रख सकता
यदि समीकरण $x ^{2}+ bx +45=0,( b \in R )$ के संयुग्मी सम्मिश्र मूल हैं, जो $|z+1|=2 \sqrt{10}$ को संतुष्ट करते हैं, तो
यदि ${z_1}$, ${z_2}$दो सम्मिश्र संख्याएँ इस प्रकार हों कि $\left| \frac{z_1 +z_2}{z_1 - z_2} \right|=1$ , तब $\frac{{{z_1}}}{{{z_2}}}$ ऐसी संख्या है जो कि होगी
किन्हीं दो सम्मिश्र संख्याओं ${z_1}$,${z_2}$तथा वास्तविक संख्याओं $a$ तथा $b$ के लिये $|(a{z_1} - b{z_2}){|^2} + |(b{z_1} + a{z_2}){|^2} = $