यदि $|z - 25i| \le 15$, तब $|\max .amp(z) - \min .amp(z)| = $
${\cos ^{ - 1}}\left( {\frac{3}{5}} \right)$
$\pi - 2{\cos ^{ - 1}}\left( {\frac{3}{5}} \right)$
$\frac{\pi }{2} + {\cos ^{ - 1}}\left( {\frac{3}{5}} \right)$
${\sin ^{ - 1}}\left( {\frac{3}{5}} \right) - {\cos ^{ - 1}}\left( {\frac{3}{5}} \right)$
सम्मिश्र संख्या $\frac{{13 - 5i}}{{4 - 9i}}$का कोणांक है
यदि $\frac{ z -\alpha}{ z +\alpha}(\alpha \in R )$ एक शुद्ध रूप से काल्पनिक संख्या है, तथा $| Z |=2$ है, तो $\alpha$ का एक मान है
माना $A=\left\{\theta \in(0,2 \pi): \frac{1+2 i \sin \theta}{1-i \sin \theta}\right.$ मात्र काल्पनिक $\}$ तो $\mathrm{A}$ में अवयवों का योग है
यदि $\alpha $ व $\beta $ भिन्न सम्मिश्र संख्याएँ इस प्रकार हैं कि $|\beta | = 1$, तब $\left| {\frac{{\beta - \alpha }}{{1 - \alpha \beta }}} \right|$ =
यदि$z$ एक सम्मिश्र संख्या है, तब सदिश $z$ तथा $ - iz$ के मध्य कोण होगा