If the sum of first $p$ terms of an $A.P.$ is equal to the sum of the first $q$ terms, then find the sum of the first $(p+q)$ terms.
Let $a$ and $d$ be the first term and the common difference of the $A.P.$ respectively.
Here,
$S_{P}=\frac{p}{2}[2 a+(p-1) d]$
$S_{q}=\frac{p}{2}[2 a+(q-1) d]$
According to the given condition, $\frac{p}{2}[2 a+(p-1) d]=\frac{q}{2}[2 a+(q-1) d]$
$\Rightarrow p[2 a+(p-1) d]=q[2 a+(q-1) d]$
$\Rightarrow 2 a p+p d(p-1)=2 a q+q d(q-1)$
$\Rightarrow 2 a(p-q)+d[p(p-1)-q(q-1)]=0$
$\Rightarrow 2 a(p-q)+d\left[p^{2}-p-q^{2}+q\right]=0$
$\Rightarrow 2 a(p-q)+d[(p-q)(p+q)-(p-q)]=0$
$\Rightarrow 2 a(p-q)+d[(p-q)(p+q-1)]=0$
$\Rightarrow 2 a+d(p+q-1)=0$
$\Rightarrow d=\frac{-2 a}{p+q-1}$ .........$(1)$
$\therefore S_{p+q}=\frac{p+q}{2}[2 a+(p+q-1) \cdot d]$
$\Rightarrow S_{p+q}=\frac{p+q}{2}\left[2 a+(p+q-1)\left(\frac{-2 a}{p+q-1}\right)\right]$ [ From $(1)$ ]
$=\frac{p+q}{2}[2 a-2 a]$
$=0$
Thus, the sum of the first $(p+q)$ terms of the $A.P.$ is $0$
If ${S_n}$ denotes the sum of $n$ terms of an arithmetic progression, then the value of $({S_{2n}} - {S_n})$ is equal to
If $a,\;b,\;c,\;d,\;e,\;f$ are in $A.P.$, then the value of $e - c$ will be
In $\Delta ABC$, if $a, b, c$ are in $A.P.$ (with usual notations), identify the incorrect statements -
The ratio of sum of $m$ and $n$ terms of an $A.P.$ is ${m^2}:{n^2}$, then the ratio of ${m^{th}}$ and ${n^{th}}$ term will be
The $A.M.$ of a $50$ set of numbers is $38$. If two numbers of the set, namely $55$ and $45$ are discarded, the $A.M.$ of the remaining set of numbers is