If the sum of first $p$ terms of an $A.P.$ is equal to the sum of the first $q$ terms, then find the sum of the first $(p+q)$ terms.
Let $a$ and $d$ be the first term and the common difference of the $A.P.$ respectively.
Here,
$S_{P}=\frac{p}{2}[2 a+(p-1) d]$
$S_{q}=\frac{p}{2}[2 a+(q-1) d]$
According to the given condition, $\frac{p}{2}[2 a+(p-1) d]=\frac{q}{2}[2 a+(q-1) d]$
$\Rightarrow p[2 a+(p-1) d]=q[2 a+(q-1) d]$
$\Rightarrow 2 a p+p d(p-1)=2 a q+q d(q-1)$
$\Rightarrow 2 a(p-q)+d[p(p-1)-q(q-1)]=0$
$\Rightarrow 2 a(p-q)+d\left[p^{2}-p-q^{2}+q\right]=0$
$\Rightarrow 2 a(p-q)+d[(p-q)(p+q)-(p-q)]=0$
$\Rightarrow 2 a(p-q)+d[(p-q)(p+q-1)]=0$
$\Rightarrow 2 a+d(p+q-1)=0$
$\Rightarrow d=\frac{-2 a}{p+q-1}$ .........$(1)$
$\therefore S_{p+q}=\frac{p+q}{2}[2 a+(p+q-1) \cdot d]$
$\Rightarrow S_{p+q}=\frac{p+q}{2}\left[2 a+(p+q-1)\left(\frac{-2 a}{p+q-1}\right)\right]$ [ From $(1)$ ]
$=\frac{p+q}{2}[2 a-2 a]$
$=0$
Thus, the sum of the first $(p+q)$ terms of the $A.P.$ is $0$
For any three positive real numbers $a,b,c$ ; $9\left( {25{a^2} + {b^2}} \right) + 25\left( {{c^2} - 3ac} \right) = 15b\left( {3a + c} \right)$ then
Let $S_n$ denote the sum of the first $n$ terms of an arithmetic progression. If $\mathrm{S}_{10}=390$ and the ratio of the tenth and the fifth terms is $15: 7$, then $S_{15}-S_5$ is equal to:
If $19^{th}$ terms of non -zero $A.P.$ is zero, then its ($49^{th}$ term) : ($29^{th}$ term) is
If $a_1, a_2, a_3, .... a_{21}$ are in $A.P.$ and $a_3 + a_5 + a_{11}+a_{17} + a_{19} = 10$ then the value of $\sum\limits_{r = 1}^{21} {{a_r}} $ is
Let $a_n, n \geq 1$, be an arithmetic progression with first term $2$ and common difference $4$ . Let $M_n$ be the average of the first $n$ terms. Then the sum $\sum \limits_{n=1}^{10} M_n$ is