यदि दो समान्तर श्रेणियाँ के $n$ वें पद क्रमश: $3n + 8$ व $7n + 15$ हों, तो उनके $12$ वें पदों का अनुपात होगा
$4/9$
$7/16$
$3/7$
$8/15$
(a) अभीष्ट अनुपात = $\frac{{44}}{{99}} = \frac{4}{9}$.
$a$ व $b$ के बीच में $n$ समान्तर माध्यों का योग है
यदि किसी समान्तर अनुक्रम की तीन संख्याओं का योग $15$ एवं उनके वर्गों का योग $83$ हो, तो संख्यायें हैं
$\sum\limits_{r = 1}^n {\log \left( {\frac{{{a^r}}}{{{b^{r – 1}}}}} \right)} $ का मान है
समान्तर श्रेढ़ी $b _{1}, b _{2}, \ldots, b _{ m }$ का सार्वअन्तर, समान्तर श्रेढ़ी $a _{1}, a _{2}, \ldots, a _{ n }$ के सार्वअन्तर से $2$ अधिक है यदि $a _{40}=- 159$, $a _{100}=-399$ तथा $b _{100}= a _{70}$, तो $b _{1}$ बराबर है
अनुक्रम में प्रत्येक के प्रथम पाँच पद लिखिये, जिनका $n$ वाँ पद दिया गया है
$a_{n}=\frac{n}{n+1}$
Confusing about what to choose? Our team will schedule a demo shortly.