यदि दो समान्तर श्रेणियाँ के $n$ वें पद क्रमश: $3n + 8$ व $7n + 15$ हों, तो उनके $12$ वें पदों का अनुपात होगा
$4/9$
$7/16$
$3/7$
$8/15$
माना $\mathrm{a}_1, \mathrm{a}_2, \ldots \ldots, \mathrm{a}_{\mathrm{n}}$ $A.P.$ में हैं। यदि $\mathrm{a}_5=2 \mathrm{a}_7$ तथा $\mathrm{a}_{11}=18$ है, तो $12\left(\frac{1}{\sqrt{a_{10}}+\sqrt{a_{11}}}+\frac{1}{\sqrt{a_{11}}+\sqrt{a_{12}}}+\ldots . \cdot \frac{1}{\sqrt{a_{17}}+\sqrt{a_{18}}}\right)$ बराबर है_________.
मान लें कि $a_n$, एक अंकगणितीय श्रेढ़ी $(arithmetic\,progression)$ है, जहाँ $n \geq 1$ है और इस श्रेढ़ी का पहला पद $2$ और सार्व अंतर $(common\,difference)$ $4$ है। मान लें कि $M_n$ पहले $n$ पदों का औसत है, तब योग $\sum \limits_{n=1}^{10} M_n$ क्या होगा ?
श्रेणी $101 + 99 + 97 + ..... + 47$ में पदों की संख्या है
शमशाद अली $22000$ रुपये में एक स्कूटर खरीदता है। वह $4000$ रुपये नकद देता है तथा शेष राशि को $1000$ रुपयें वार्षिक किश्त के अतिरिक्त उस धन पर जिसका भुगतान न किया गया हो $10 \%$ वार्षिक ब्याज भी देता है। उसे स्कूटर के लिए कुल कितनी राशि चुकानी पड़ेगी ?
यदि $1,\,\,{\log _9}({3^{1 - x}} + 2),\,\,{\log _3}({4.3^x} - 1)$ समान्तर श्रेणी में हों, तो $x$ का मान होगा