समान्तर श्रेढ़ी $b _{1}, b _{2}, \ldots, b _{ m }$ का सार्वअन्तर, समान्तर श्रेढ़ी $a _{1}, a _{2}, \ldots, a _{ n }$ के सार्वअन्तर से $2$ अधिक है यदि $a _{40}=- 159$, $a _{100}=-399$ तथा $b _{100}= a _{70}$, तो $b _{1}$ बराबर है

  • [JEE MAIN 2020]
  • A

    $-127$

  • B

    $-81$

  • C

    $81$

  • D

    $127$

Similar Questions

मान लें कि एक समांतर श्रेणी $(arithmetic\,progression)$ के पहले $m$ पदों का योग $n$ है एवं इसके पहले $n$ पदों का योग $m$ है। यहाँ $m \neq n$ है। तब इस श्रेणी के पहले $(m+n)$ पदों का योग होगा:

  • [KVPY 2018]

यदि एक समान्तर श्रेढ़ी के प्रथम तीन पदों का योगफल तथा गुणनफल क्रमशः $33$ तथा $1155$ है, तो इसके $11$ वें पद का एक मान है 

  • [JEE MAIN 2019]

यदि किसी समान्तर श्रेणी का  $9$ वाँ पद $35$ एवं $19$ वाँ पद $75$ है, तो इसका $20$ वाँ पद होगा

यदि $a$ तथा $b$ के मध्य $n$ समान्तर माध्य इस प्रकार प्रविष्ट किये जाते है कि प्रथम माध्य तथा अंतिम माध्य का अनुपात $1: 7$ तथा $a+n=33$ है, $n$ का मान है

  • [JEE MAIN 2022]

किसी समान्तर श्रेणी का $n$ वाँ पद $3n - 1$ है, तो इसके प्रथम पाँच पदों का योगफल होगा