8. Sequences and Series
hard

समान्तर श्रेढ़ी $b _{1}, b _{2}, \ldots, b _{ m }$ का सार्वअन्तर, समान्तर श्रेढ़ी $a _{1}, a _{2}, \ldots, a _{ n }$ के सार्वअन्तर से $2$ अधिक है यदि $a _{40}=- 159$, $a _{100}=-399$ तथा $b _{100}= a _{70}$, तो $b _{1}$ बराबर है

A

$-127$

B

$-81$

C

$81$

D

$127$

(JEE MAIN-2020)

Solution

$a_{1}, a_{2}, \ldots, a_{n} \rightarrow(C D=d)$

$b _{1}, b _{2}, \ldots, b _{ m } \rightarrow( CD = d +2)$

$a_{40}=a+39 d=-159$

$a_{100}=a+99 d=-399$

Subtract : $60 d =-240 \Rightarrow d =-4$

using equation (1)

$a+39(-4)=-159$

$a=156-159=-3$

$a_{70}=a+69 d=-3+69(-4)=-279=b_{100}$

$b_{100}=-279$

$b_{1}+99(d+2)=-279$

$b_{1}-198=-279 \Rightarrow b_{1}=-81$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.