The interior angles of a polygon are in $A.P.$ If the smallest angle be ${120^o}$ and the common difference be $5^o$, then the number of sides is
$8$
$10$
$9$
$6$
Find the $9^{\text {th }}$ term in the following sequence whose $n^{\text {th }}$ term is $a_{n}=(-1)^{n-1} n^{3}$
If ${S_n}$ denotes the sum of $n$ terms of an arithmetic progression, then the value of $({S_{2n}} - {S_n})$ is equal to
If three positive numbers $a, b$ and $c$ are in $A.P.$ such that $abc\, = 8$, then the minimum possible value of $b$ is
If $1,\,\,{\log _9}({3^{1 - x}} + 2),\,\,{\log _3}({4.3^x} - 1)$ are in $A.P.$ then $x$ equals
Let ${a_1},{a_2},{a_3}, \ldots $ be terms of $A.P.$ If $\frac{{{a_1} + {a_2} + \ldots + {a_p}}}{{{a_1} + {a_2} + \ldots + {a_q}}} = \frac{{{p^2}}}{{{q^2}}},p \ne q$ then $\frac{{{a_6}}}{{{a_{21}}}}$ equals