यदि ${a_1} = {a_2} = 2,\;{a_n} = {a_{n - 1}} - 1\;(n > 2)$, तब ${a_5}$ है
$1$
$- 1$
$0$
$- 2$
चार संख्यायें समान्तर श्रेणी में हैं। यदि प्रथम तथा अंतिम पदों का योग $8$ है तथा दोनों मध्य पदों का गुणनफल $15$ है, तो श्रेणी की न्यूनतम संख्या होगी
उस समांतर श्रेणी के $n$ पदों का योगफल ज्ञात कीजिए, जिसका $k$ वाँ पद $5 k +1$ है।
माना एक समांतर श्रेढ़ी के प्रथम तीन पदों का योग $39$ है तथा इसके अंतिम चार पदों का योग $178$ है। यदि इस समांतर श्रेढ़ी का प्रथम पद $10$ है, तो इस समांतर श्रेढ़ी का माध्यक है
निम्नलिखित अनुक्रम में वांधित पद ज्ञात कीजिए, जिनका $n$ वाँ पर दिया गया है
$a_{n}=\frac{n^{2}}{2^{n}} ; a_{7}$
यदि ${a_1},\;{a_2},\;{a_3}.......{a_n}$ स.श्रे. में हों,(जहाँ $i$ के सभी मानों के लिये ${a_i} > 0$), तब $\frac{1}{{\sqrt {{a_1}} + \sqrt {{a_2}} }} + \frac{1}{{\sqrt {{a_2}} + \sqrt {{a_3}} }} + $$........ + \frac{1}{{\sqrt {{a_{n - 1}}} + \sqrt {{a_n}} }}$ का मान होगा