If the sum of a certain number of terms of the $A.P.$ $25,22,19, \ldots \ldots .$ is $116$ Find the last term
Let the sum of $n$ terms of the given $A.P.$ be $116$
$S_{n}=\frac{n}{2}[2 a+(n-1) d]$
Here, $a=25$ and $d=22-25=-3$
$\therefore S_{n}=\frac{n}{2}[2 \times 25+(n-1)(-3)]$
$\Rightarrow 116=\frac{n}{2}[50-3 n+3]$
$\Rightarrow 232=n(53-3 n)=53 n-3 n^{2}$
$\Rightarrow 3 n^{2}-53 n+232=0$
$\Rightarrow 3 n^{2}-24 n-29 n+232=0$
$\Rightarrow 3 n(n-8)-29(n-8)=0$
$\Rightarrow(n-8)(3 n-29)=0$
$\Rightarrow n=8$ or $n=\frac{29}{3}$
Howerer, $n$ cannot be equal to $\frac{29}{3}$ therefore, $n=8$
$\therefore a_{8}=$ Last term $=a+(n-1) d=25+(8-1)(-3)$
$=25+(7)(-3)=25-21$
$=4$
Thus, the last term of the $A.P.$ is $4.$
The number of terms of the $A.P. 3,7,11,15...$ to be taken so that the sum is $406$ is
The sum of all two digit numbers which, when divided by $4$, yield unity as a remainder is
The value of $x$ satisfying ${\log _a}x + {\log _{\sqrt a }}x + {\log _{3\sqrt a }}x + .........{\log _{a\sqrt a }}x = \frac{{a + 1}}{2}$ will be
If the sum of first $11$ terms of an $A.P.$, $a_{1} a_{2}, a_{3}, \ldots$is $0\left(\mathrm{a}_{1} \neq 0\right),$ then the sum of the $A.P.$, $a_{1}, a_{3}, a_{5}, \ldots, a_{23}$ is $k a_{1},$ where $k$ is equal to
If three distinct number $a, b, c$ are in $G.P.$ and the equations $ax^2 + 2bc + c = 0$ and $dx^2 + 2ex + f = 0$ have a common root, then which one of the following statements is correct?