If the sum of a certain number of terms of the $A.P.$ $25,22,19, \ldots \ldots .$ is $116$ Find the last term
Let the sum of $n$ terms of the given $A.P.$ be $116$
$S_{n}=\frac{n}{2}[2 a+(n-1) d]$
Here, $a=25$ and $d=22-25=-3$
$\therefore S_{n}=\frac{n}{2}[2 \times 25+(n-1)(-3)]$
$\Rightarrow 116=\frac{n}{2}[50-3 n+3]$
$\Rightarrow 232=n(53-3 n)=53 n-3 n^{2}$
$\Rightarrow 3 n^{2}-53 n+232=0$
$\Rightarrow 3 n^{2}-24 n-29 n+232=0$
$\Rightarrow 3 n(n-8)-29(n-8)=0$
$\Rightarrow(n-8)(3 n-29)=0$
$\Rightarrow n=8$ or $n=\frac{29}{3}$
Howerer, $n$ cannot be equal to $\frac{29}{3}$ therefore, $n=8$
$\therefore a_{8}=$ Last term $=a+(n-1) d=25+(8-1)(-3)$
$=25+(7)(-3)=25-21$
$=4$
Thus, the last term of the $A.P.$ is $4.$
A number is the reciprocal of the other. If the arithmetic mean of the two numbers be $\frac{{13}}{{12}}$, then the numbers are
If the ${p^{th}}$ term of an $A.P.$ be $q$ and ${q^{th}}$ term be $p$, then its ${r^{th}}$ term will be
Write the first five terms of the sequences whose $n^{t h}$ term is $a_{n}=n(n+2)$
Let $a$, $b$ be two non-zero real numbers. If $p$ and $r$ are the roots of the equation $x ^{2}-8 ax +2 a =0$ and $q$ and $s$ are the roots of the equation $x^{2}+12 b x+6 b$ $=0$, such that $\frac{1}{ p }, \frac{1}{ q }, \frac{1}{ r }, \frac{1}{ s }$ are in A.P., then $a ^{-1}- b ^{-1}$ is equal to $......$
If $n$ is the smallest natural number such that $n+2 n+3 n+\ldots+99 n$ is a perfect square, then the number of digits of $n^2$ is