If $1,\,\,{\log _9}({3^{1 - x}} + 2),\,\,{\log _3}({4.3^x} - 1)$ are in $A.P.$ then $x$ equals

  • [AIEEE 2002]
  • A

    ${\log _3}4$

  • B

    $1 - {\log _3}4$

  • C

    $1 - {\log _4}3$

  • D

    ${\log _4}3$

Similar Questions

Let $X$ be the set consisting of the first $2018$ terms of the arithmetic progression $1,6,11$,

. . . .and $Y$ be set consisting of the first $2018$ terms of the arithmetic progression $9, 16, 23$,. . . . . Then, the number of elements in the set $X \cup Y$ is. . . . 

  • [IIT 2018]

The sum of the common terms of the following three arithmetic progressions.

$3,7,11,15,...................,399$

$2,5,8,11,............,359$ and

$2,7,12,17,...........,197$, is equal to $................$.

  • [JEE MAIN 2023]

A series whose $n^{th}$ term is $\left( {\frac{n}{x}} \right) + y,$ the sum of $r$ terms will be

If $a _{1}, a _{2}, a _{3} \ldots$ and $b _{1}, b _{2}, b _{3} \ldots$ are $A.P.$ and $a_{1}=2, a_{10}=3, a_{1} b_{1}=1=a_{10} b_{10}$ then $a_{4} b_{4}$ is equal to

  • [JEE MAIN 2022]

Let $a_1, a_2, a_3, \ldots, a_{100}$ be an arithmetic progression with $a_1=3$ and $S_p=\sum_{i=1}^p a_i, 1 \leq p \leq 100$. For any integer $n$ with $1 \leq n \leq 20$, let $m=5 n$. If $\frac{S_{m m}}{S_n}$ does not depend on $n$, then $a_2$ is

  • [IIT 2011]