एक समांतर श्रेणी में $15$ पद हैं। इसका पहला पद $5$ है तथा योग $390$ है। मध्य पद है

  • A

    $23$

  • B

    $26$

  • C

    $29$

  • D

    $32$

Similar Questions

यदि किसी समांतर श्रेणी के $n$ पदों का योग $n P +\frac{1}{2} n(n-1) Q$, है, जहाँ $P$ तथा $Q$ अचर हो तो सार्व अंतर ज्ञात कीजिए।

माना $a, b, c$ एक समान्तर श्रेढ़ी में है। माना त्रिभुज जिसके शीर्ष बिन्दु $( a , c ),(2, b )$ तथा $( a , b )$ है, का केन्द्रक $\left(\frac{10}{3}, \frac{7}{3}\right)$ है। यदि समीकरण, $a x ^{2}+ bx +1=0$ के मूल $\alpha$ तथा $\beta$ है, तो $\alpha^{2}+\beta^{2}-\alpha \beta$ का मान है

  • [JEE MAIN 2021]

माना $a_1=8, a_2, a_3, \ldots a_n$ एक $A.P.$ हैं। यदि इसके प्रथम चार पदों का योग $50$ है तथा इसके अन्तिम चार पदों का योग $170$ है, तब इसके मध्य दो पदों का गुणनफल _____________हैं।

  • [JEE MAIN 2023]

माना $\mathrm{a}_1, \mathrm{a}_2, \ldots \ldots, \mathrm{a}_{\mathrm{n}}$  $A.P.$ में हैं। यदि $\mathrm{a}_5=2 \mathrm{a}_7$ तथा $\mathrm{a}_{11}=18$ है, तो $12\left(\frac{1}{\sqrt{a_{10}}+\sqrt{a_{11}}}+\frac{1}{\sqrt{a_{11}}+\sqrt{a_{12}}}+\ldots . \cdot \frac{1}{\sqrt{a_{17}}+\sqrt{a_{18}}}\right)$ बराबर है_________.

  • [JEE MAIN 2023]

तीन समांतर श्रेणियों

$3,7,11,15, \ldots \ldots . . . ., 399$,

$2,5,8,11, \ldots \ldots \ldots \ldots . ., 359$ तथा

$2,7,12,17, \ldots \ldots . ., 197$,

के उभ्यनिष्ठ पदों का योग है ____________I

  • [JEE MAIN 2023]