If ${a_1},\,{a_2},....,{a_{n + 1}}$ are in $A.P.$, then $\frac{1}{{{a_1}{a_2}}} + \frac{1}{{{a_2}{a_3}}} + ..... + \frac{1}{{{a_n}{a_{n + 1}}}}$ is
$\frac{{n - 1}}{{{a_1}{a_{n + 1}}}}$
$\frac{1}{{{a_1}{a_{n + 1}}}}$
$\frac{{n + 1}}{{{a_1}{a_{n + 1}}}}$
$\frac{n}{{{a_1}{a_{n + 1}}}}$
If $\log _{10} 2, \log _{10} (2^x + 1), \log _{10} (2^x + 3)$ are in $A.P.,$ then :-
Let the digits $a, b, c$ be in $A.P.$ Nine-digit numbers are to be formed using each of these three digits thrice such that three consecutive digits are in $A.P.$ at least once. How many such numbers can be formed?
Let $S_{n}$ denote the sum of first $n$-terms of an arithmetic progression. If $S_{10}=530, S_{5}=140$, then $\mathrm{S}_{20}-\mathrm{S}_{6}$ is equal to :
Let $a , b , c$ be in arithmetic progression. Let the centroid of the triangle with vertices $( a , c ),(2, b)$ and $(a, b)$ be $\left(\frac{10}{3}, \frac{7}{3}\right)$. If $\alpha, \beta$ are the roots of the equation $ax ^{2}+ bx +1=0$, then the value of $\alpha^{2}+\beta^{2}-\alpha \beta$ is ....... .
If $3^{2 \sin 2 \alpha-1},14$ and $3^{4-2 \sin 2 \alpha}$ are the first three terms of an $A.P.$ for some $\alpha$, then the sixth term of this $A.P.$ is