यदि ${a_1},\,{a_2},....,{a_{n + 1}}$ समांतर श्रेणी में हों, तो  $\frac{1}{{{a_1}{a_2}}} + \frac{1}{{{a_2}{a_3}}} + ..... + \frac{1}{{{a_n}{a_{n + 1}}}}$ का मान होगा

  • A

    $\frac{{n - 1}}{{{a_1}{a_{n + 1}}}}$

  • B

    $\frac{1}{{{a_1}{a_{n + 1}}}}$

  • C

    $\frac{{n + 1}}{{{a_1}{a_{n + 1}}}}$

  • D

    $\frac{n}{{{a_1}{a_{n + 1}}}}$

Similar Questions

माना एक समान्तर श्रेढ़ी के प्रथम $n$ पदों का योगफल $S _{ n }$ है। यदि $S _{3 n }=3 S _{2 n }$ है, तो $\frac{ S _{4 n }}{ S _{2 n }}$ बराबर है

  • [JEE MAIN 2021]

यदि ${a_1},\;{a_2},............,{a_n}$ एक समांतर श्रेणी में हैं, जिसका सार्वान्तर $d$ है, तब श्रेणी $\sin d(\cos {\rm{ec}}\,{a_1}.{\rm{cosec}}\,{a_2} + {\rm{cosec}}\,{a_2}.{\rm{cosec}}\,{a_3} + ...........$ $ + {\rm{cosec}}\;{a_{n - 1}}{\rm{cosec}}\;{a_{n - 1}}{\rm{cosec}}\;{a_n})$

यदि $x,y,z$ समान्तर श्रेणी में हों तथा ${\tan ^{ - 1}}x,{\tan ^{ - 1}}y$, ${\tan ^{ - 1}}z$ भी समान्तर श्रेणी में हों, तब

यदि एक समांतर श्रेढ़ी का प्रथम पद $3$ है तथा इसके प्रथम $25$ पदों का योग, इसके अगले $15$ पदों के योग के बराबर है, तो इस समांतर श्रेढ़ी का सार्वअंतर है

  • [JEE MAIN 2020]

प्रथम $n$ सम संख्याओं का योग, प्रथम $n$ विषम संख्याओं के योग का होगा