यदि $A$, दो संख्याओं का समान्तर माध्य हो और $S$, उन दो संख्याओं के बीच $n$ समान्तर माध्यों का योग हो, तो
$S = n\,A$
$A = n\,S$
$A = S$
इनमें से कोई नहीं
यदि श्रेणी $2 + 5 + 8 + 11............$ का योग $60100$ हो, तो पदों की संख्या होगी
मान लें कि एक समांतर श्रेणी $(arithmetic\,progression)$ के पहले $m$ पदों का योग $n$ है एवं इसके पहले $n$ पदों का योग $m$ है। यहाँ $m \neq n$ है। तब इस श्रेणी के पहले $(m+n)$ पदों का योग होगा:
यदि किसी समांतर श्रेणी के $n$ पदों का योगफल $\left(p n+q n^{2}\right)$, है, जहाँ $p$ तथा $q$ अचर हों तो सार्व अंतर ज्ञात कीजिए।
अनुक्रम में प्रत्येक के प्रथम पाँच पद लिखिये, जिनका $n$ वाँ पद दिया गया है
$a_{n}=(-1)^{n-1} 5^{n+1}$
यदि $a{x^2} + bx + c = 0$ के मूलों का योग उनके व्युत्क्रम के वर्गों के योग के बराबर हो, तो $\frac{c}{a},\frac{a}{b},\frac{b}{c}$ होंगे