यदि किसी समान्तर श्रेणी का $p$ वाँ पद $\frac{1}{q}$ और $q$ वाँ पद $\frac{1}{p}$ है, तो इसके $pq$ पदों का योग होगा
$\frac{{pq - 1}}{2}$
$\frac{{1 - pq}}{2}$
$\frac{{pq + 1}}{2}$
$ - \frac{{pq + 1}}{2}$
यदि $x_{1}, x_{2}, \ldots ., x_{n}$ तथा $\frac{1}{h_{1}}, \frac{1}{h_{2}}, \ldots ., \frac{1}{h_{n}}$ दो ऐसी समांतर श्रेढियां हैं कि $x_{3}=h_{2}=8$ तथा $x_{8}=h_{7}=20$ है, तो $x_{5} . h_{10}$ का मान है
यदि श्रेणी $2 + 5 + 8 + 11............$ का योग $60100$ हो, तो पदों की संख्या होगी
उस समांतर श्रेणी के $n$ पदों का योगफल ज्ञात कीजिए, जिसका $k$ वाँ पद $5 k +1$ है।
पाँच संख्याएँ समान्तर श्रेढी में हैं, जिनका योगफल $25$ तथा गुणनफल $2520$ हैं यदि इन पाँच संख्याओं में से एक $-\frac{1}{2}$ है, तो इनमें सबसे बडी संख्या है
ऐसी $6$ संख्याएँ ज्ञात कीजिए जिनको $3$ और $24$ के बीच रखने पर प्राप्त अनुक्रम एक समांतर श्रेणी बन जाए।