यदि किसी समान्तर श्रेणी का $p$ वाँ पद $\frac{1}{q}$ और $q$ वाँ पद $\frac{1}{p}$ है, तो इसके $pq$ पदों का योग होगा
$\frac{{pq - 1}}{2}$
$\frac{{1 - pq}}{2}$
$\frac{{pq + 1}}{2}$
$ - \frac{{pq + 1}}{2}$
यदि $n$ विषम या सम हो,तो श्रेणी $1 - 2 + 3 - 4 + 5 - 6 + ......$ के $n$ पदों का योग होगा
यदि किसी समांतर श्रेणी के प्रथम $p$ पदों का योग, प्रथम $q$ पदों के योगफल के बराबर हो तो प्रथम $(p+q)$ पदों का योगफल ज्ञात कीजिए।
यदि श्रेणी $\sqrt{3}+\sqrt{75}+\sqrt{243}+\sqrt{507}+\ldots$ के प्रथम $n$ पदों का योग $435 \sqrt{3}$ है, तो $n$ बराबर है
श्रेणी $\frac{1}{2} + \frac{1}{3} + \frac{1}{6} + ........$ के $9$ पदों का योगफल है
एक समान्तर श्रेणी के प्रथम चार पदों का योग $56$ है। अन्तिम चार पदों का योग $112$ है। यदि इसका प्रथम पद $11$ हो, तो पदों की संख्या है