- Home
- Standard 11
- Mathematics
किसी सड़क के एक ओर के घरों को लगातारं सम संख्याओं से अंकित किया गया है। इन सभी समसंख्याओं का योग $170$ है। यदि कम से कम $6$ घर हों और छठे घर का अंक $a$ हो तो :
$2 \leq a \leq 6$
$8 \leq a \leq 12$
$14 \leq a \leq 20$
$22 < a \leq 30$
Solution
(c)
Let the number of houses be $x, x+2, x+4, x+6, x+8, x+10, \ldots$ 6 th number of house is $a$.
$\because x+10=a \Rightarrow x=a-10$
$\therefore x > 10$
Now, $\quad S_n=\frac{n}{2}(2 x+(n-1) 2)$
$S_n=n(x+n-1)$
$\Rightarrow 170=n(a-10+n-1)$
$\Rightarrow n^2+(a-11) n-170=0$
$\Rightarrow n=-(a-11) \pm \sqrt{(a-11)^2+680}$
$\Rightarrow \quad n=\frac{(11-a) \pm \sqrt{(a-11)^2+680}}{2}$
$n \geq 6$
$\Rightarrow \quad n=\frac{(11-a) \pm \sqrt{(a-11)^2+680}}{2} \geq 6$
$\Rightarrow \quad a \leq \frac{800}{24} \leq 33.33$
$\because \quad 12 \leq a \leq 32$
$a=12,14,16,18, \ldots$
When, $a=18, n=10$, then $S_n=170$ $\because \quad a=18$