Gujarati
8. Sequences and Series
medium

यदि दो संख्याओं के मध्य दो गुणोत्तर माध्य ${G_1}$ व ${G_2}$ तथा समान्तर माध्य $A$ रखे जावें, तब $\frac{{G_1^2}}{{{G_2}}} + \frac{{G_2^2}}{{{G_1}}}$ का मान होगा

A

$\frac{A}{2}$

B

$A$

C

$2A$

D

इनमें से कोई नहीं

Solution

(c) माना दो संख्यायें $p$ व $q$ हैं

$\therefore \,\,{G_1} = {p^{2/3}}\,\,{q^{1/3}},\,\,{G_2} = {p^{1/3}}\,\,\,{q^{2/3}}$

$\therefore \,\frac{{G_1^2}}{{{G_2}}} + \frac{{G_2^2}}{{{G_1}}} = \frac{{{p^{4/3}}\,\,{q^{2/3}}}}{{{p^{1/3}}\,\,{q^{2/3}}}} + \frac{{{p^{2/3}}\,{q^{4/3}}}}{{{p^{2/3}}\,{q^{1/3}}}}$

$ = p + q = 2 \times \,\left( {\frac{{p + q}}{2}} \right)\, = 2A$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.