श्रेणी $9 - 3 + 1 - \frac{1}{3} + .....\infty$ का अनन्त पदों तक योगफल है

  • A

    $9$

  • B

    $9/2$

  • C

    $27/4$

  • D

    $15/2$

Similar Questions

किसी गुणोत्तर श्रेणी का प्रथम पद $1$ है। तीसरे एवं पाँचवें पदों का योग $90$ हो तो गुणोत्तर श्रेणी का सार्व अनुपात ज्ञात कीजिए।

माना $a _1, a _2, a _3, \ldots$. धनात्मक पूर्णांकों का एक अनुक्रम समान्तर श्रेढ़ी में है जिसका सार्वअन्तर $2$ है। माना $b _1, b _2$, $b _3, \ldots$ धनात्मक पूर्णांकों का एक अनुक्रम गुणोत्तर श्रेढ़ी में है जिसका सार्वअनुपात $2$ है। यदि $a _1= b _1=c$ हो, तो $c$ के सभी संभव मानों की संख्या, जिसके लिये किसी भी धनात्मक पूर्णांक $n$ के लिये समिका

$2\left( a _1+ a _2+\ldots+ a _{ n }\right)= b _1+ b _2+\ldots . .+ b _{ n }$

सत्य हो, होगी

  • [IIT 2020]

माना $\mathrm{a}_1, \mathrm{a}_2, \mathrm{a}_3, \ldots$. वर्धमान धनात्मक संख्याओं की एक $GP$  है। यदि चौथे व छटवें पदों का गुणनफल 9 है और पाँचवे व सातवें पदों का योग 24 है, तब $\mathrm{a}_1 \mathrm{a}_9+\mathrm{a}_2 \mathrm{a}_4 \mathrm{a}_9+\mathrm{a}_5+\mathrm{a}_7$ बराबर है___________________.

  • [JEE MAIN 2023]

श्रेणी $(32)(32) 1/6(32)1/36 ...... $ अनन्त पदों तक का गुणनफल है

गुणोत्तर श्रेणी $5, - \frac{5}{2},\frac{5}{4}, - \frac{5}{8},...$ का $n$ वाँ पद$\frac{5}{{1024}}$ हो, तो $n$ का मान होगा