- Home
- Standard 11
- Mathematics
8. Sequences and Series
normal
Let ${S_1},{S_2},......,{S_{101}}$ be the consecutive terms of an $A.P$ . If $\frac{1}{{{S_1}{S_2}}} + \frac{1}{{{S_2}{S_3}}} + .... + \frac{1}{{{S_{100}}{S_{101}}}} = \frac{1}{6}$ and ${S_1} + {S_{101}} = 50$ , then $\left| {{S_1} - {S_{101}}} \right|$ is equal to
A
$10$
B
$20$
C
$30$
D
$40$
Solution
Using properties of $A.P$.,
we get $|S_1 – S _{101}| = 10$
Standard 11
Mathematics