If $a \in R$ and the equation $ - 3{\left( {x - \left[ x \right]} \right)^2} + 2\left( {x - \left[ x \right]} \right) + {a^2} = 0$ (where $[x]$ denotes the greatest integer $\leq\,x$)has no integral solution ,then all possible values of $a$ lie in the interval
$\left( { - 1,0} \right) \cup \left( {0,1} \right)$
$\left( {1,2} \right)$
$\left( { - 2, - 1} \right)$
$\left( { - \infty , - 2} \right) \cup \left( {2,\infty } \right)$
The number of positive integers $x$ satisfying the equation $\frac{1}{x}+\frac{1}{x+1}+\frac{1}{x+2}=\frac{13}{2}$ is.
Let $x, y, z$ be positive integers such that $HCF$ $(x, y, z)=1$ and $x^2+y^2=2 z^2$. Which of the following statements are true?
$I$. $4$ divides $x$ or $4$ divides $y$.
$II$. $3$ divides $x+y$ or $3$ divides $x-y$.
$III$. $5$ divides $z\left(x^2-y^2\right)$.
The equation $x^2-4 x+[x]+3=x[x]$, where $[x]$ denotes the greatest integer function, has:
$\alpha$, $\beta$ ,$\gamma$ are roots of equatiuon $x^3 -x -1 = 0$ then equation whose roots are $\frac{1}{{\beta + \gamma }},\frac{1}{{\gamma + \alpha }},\frac{1}{{\alpha + \beta }}$ is
The number of real solutions of the equation $|{x^2} + 4x + 3| + 2x + 5 = 0 $are