If $a \in R$ and the equation $ - 3{\left( {x - \left[ x \right]} \right)^2} + 2\left( {x - \left[ x \right]} \right) + {a^2} = 0$ (where $[x]$ denotes the greatest integer $\leq\,x$)has no integral solution ,then all possible values of $a$ lie in the interval

  • [JEE MAIN 2014]
  • A

    $\left( { - 1,0} \right) \cup \left( {0,1} \right)$

  • B

    $\left( {1,2} \right)$

  • C

    $\left( { - 2, - 1} \right)$

  • D

    $\left( { - \infty , - 2} \right) \cup \left( {2,\infty } \right)$

Similar Questions

If $\alpha ,\beta ,\gamma$  are the roots of $x^3 - x - 2 = 0$, then the value of $\alpha^5 + \beta^5 + \gamma^5$ is-

Let $\alpha$ and $\beta$ be the two disinct roots of the equation $x^3 + 3x^2 -1 = 0.$ The equation which has $(\alpha \beta )$ as its root is equal to

The number of roots of the equation $\log ( - 2x)$ $ = 2\log (x + 1)$ are

Let $f(x)=a x^2+b x+c$, where $a, b, c$ are integers, Suppose $f(1)=0,40 < f(6) < 50,60 < f(7) < 70$ and $1000 t < f(50) < 1000(t+1)$ for some integer $t$. Then, the value of $t$ is

  • [KVPY 2011]

Let $a, b, c$ be non-zero real numbers such that $a+b+c=0$, let $q=a^2+b^2+c^2$ and $r=a^4+b^4+c^4$. Then,

  • [KVPY 2014]