माना $a$ के धन पूर्णांक मानों, जिन के लिए $\frac{a x^2+2(a+1) x+9 a+4}{x^2-8 x+32} < 0, \forall x \in \mathbb{R}$ है, का समुच्चय $\mathrm{S}$ है। तो $\mathrm{S}$ में अवयवों की संख्या है।
$1$
$0$
$\infty$
$3$
अन्तराल $( - 3,\,3/2)$ में ${x^2} - 3x + 3$ का न्यूनतम मान है
यदि $\alpha , \beta , \gamma $ समीकरण ${x^3} + a{x^2} + bx + c = 0$ के मूल हों, तो ${\alpha ^{ - 1}} + {\beta ^{ - 1}} + {\gamma ^{ - 1}} = $
यदि $x$ वास्तविक है तथा $x + 2 > \sqrt {x + 4} $ को सन्तुष्ट करता है, तब
यदि ${x^2} + px + 1$, व्यंजक $a{x^3} + bx + c$ का एक गुणनखण्ड हो, तो
समीकरण
$x+1-2 \log _{2}\left(3+2^{x}\right)+2 \log _{4}\left(10-2^{-x}\right)=0$
के मूलों का योग है