माना $a$ के धन पूर्णांक मानों, जिन के लिए $\frac{a x^2+2(a+1) x+9 a+4}{x^2-8 x+32} < 0, \forall x \in \mathbb{R}$ है, का समुच्चय $\mathrm{S}$ है। तो $\mathrm{S}$ में अवयवों की संख्या है।
$1$
$0$
$\infty$
$3$
यदि $x$ वास्तविक है तो ${x^2} - 6x + 13$ का मान कम नहीं होगा
यदि समीकरण ${x^3} - 3x + 2 = 0$ के दो मूल बराबर हों तो मूल होंगे
माना $p , q$ तथा $r ,( p \neq q , r \neq 0)$, वास्तविक संख्याएँ ऐसी हैं कि समीकरण $\frac{1}{x+ p }+\frac{1}{x+ q }=\frac{1}{ r }$ के मूल बराबर तथा विपरीत चिन्हों के हैं, तो इन मूलों के वर्गों का योगफल बराबर है
समीकरण $\mathrm{x}^2-4 \mathrm{x}+[\mathrm{x}]+3=\mathrm{x}[\mathrm{x}]$, जहाँ $[\mathrm{x}]$ महत्तम पूर्णांक फलन है,
समीकरण
$x+1-2 \log _{2}\left(3+2^{x}\right)+2 \log _{4}\left(10-2^{-x}\right)=0$
के मूलों का योग है