माना $a$ के धन पूर्णांक मानों, जिन के लिए $\frac{a x^2+2(a+1) x+9 a+4}{x^2-8 x+32} < 0, \forall x \in \mathbb{R}$ है, का समुच्चय $\mathrm{S}$ है। तो $\mathrm{S}$ में अवयवों की संख्या है।

  • [JEE MAIN 2024]
  • A

    $1$

  • B

    $0$

  • C

    $\infty$

  • D

    $3$

Similar Questions

यदि $x$ वास्तविक है तो ${x^2} - 6x + 13$ का मान कम नहीं होगा

यदि समीकरण ${x^3} - 3x + 2 = 0$ के दो मूल बराबर हों तो मूल होंगे

माना $p , q$ तथा $r ,( p \neq q , r \neq 0)$, वास्तविक संख्याएँ ऐसी हैं कि समीकरण $\frac{1}{x+ p }+\frac{1}{x+ q }=\frac{1}{ r }$ के मूल बराबर तथा विपरीत चिन्हों के हैं, तो इन मूलों के वर्गों का योगफल बराबर है

  • [JEE MAIN 2018]

समीकरण $\mathrm{x}^2-4 \mathrm{x}+[\mathrm{x}]+3=\mathrm{x}[\mathrm{x}]$, जहाँ $[\mathrm{x}]$ महत्तम पूर्णांक फलन है,

  • [JEE MAIN 2023]

समीकरण

$x+1-2 \log _{2}\left(3+2^{x}\right)+2 \log _{4}\left(10-2^{-x}\right)=0$

के मूलों का योग है

  • [JEE MAIN 2021]