If $\alpha ,\beta $are the roots of ${x^2} - ax + b = 0$ and if ${\alpha ^n} + {\beta ^n} = {V_n}$, then
${V_{n + 1}} = a{V_n} + b{V_{n - 1}}$
${V_{n + 1}} = a{V_n} + a{V_{n - 1}}$
${V_{n + 1}} = a{V_n} - b{V_{n - 1}}$
${V_{n + 1}} = a{V_{n - 1}} - b{V_n}$
The number of real solutions of the equation $3\left(x^2+\frac{1}{x^2}\right)-2\left(x+\frac{1}{x}\right)+5=0$, is
The equation${e^x} - x - 1 = 0$ has
Let $f(x)={{x}^{2}}-x+k-2,k\in R$ then the complete set of values of $k$ for which $y=\left| f\left( \left| x \right| \right) \right|$ is non-derivable at $5$ distinict points is
The number of real solutions of the equation $e ^{4 x }+4 e ^{3 x }-58 e ^{2 x }+4 e ^{ x }+1=0$ is..........
Let $r$ be a real number and $n \in N$ be such that the polynomial $2 x^2+2 x+1$ divides the polynomial $(x+1)^n-r$. Then, $(n, r)$ can be