If $\alpha ,\beta $are the roots of ${x^2} - ax + b = 0$ and if ${\alpha ^n} + {\beta ^n} = {V_n}$, then
${V_{n + 1}} = a{V_n} + b{V_{n - 1}}$
${V_{n + 1}} = a{V_n} + a{V_{n - 1}}$
${V_{n + 1}} = a{V_n} - b{V_{n - 1}}$
${V_{n + 1}} = a{V_{n - 1}} - b{V_n}$
The number of real solutions of the equation $|x{|^2}$-$3|x| + 2 = 0$ are
The value of $x$ in the given equation ${4^x} - {3^{x\,\; - \;\frac{1}{2}}} = {3^{x + \frac{1}{2}}} - {2^{2x - 1}}$is
If $72^x \cdot 48^y=6^{x y}$, where $x$ and $y$ are non-zero rational numbers, then $x+y$ equals
If $\alpha , \beta , \gamma $ are roots of equation ${x^3} + a{x^2} + bx + c = 0$, then ${\alpha ^{ - 1}} + {\beta ^{ - 1}} + {\gamma ^{ - 1}} = $
If $x$ is real, then the value of $\frac{{{x^2} + 34x - 71}}{{{x^2} + 2x - 7}}$ does not lie between