If $\alpha ,\beta $are the roots of ${x^2} - ax + b = 0$ and if ${\alpha ^n} + {\beta ^n} = {V_n}$, then

  • A

    ${V_{n + 1}} = a{V_n} + b{V_{n - 1}}$

  • B

    ${V_{n + 1}} = a{V_n} + a{V_{n - 1}}$

  • C

    ${V_{n + 1}} = a{V_n} - b{V_{n - 1}}$

  • D

    ${V_{n + 1}} = a{V_{n - 1}} - b{V_n}$

Similar Questions

For a real number $x$, let $[x]$ denote the largest integer less than or equal to $x$, and let $\{x\}=x-[x]$. The number of solutions $x$ to the equation $[x]\{x\}=5$ with $0 \leq x \leq 2015$ is

  • [KVPY 2015]

The number of real roots of the equation ${e^{\sin x}} - {e^{ - \sin x}} - 4$ $ = 0$ are

  • [IIT 1982]

Let $f(x)=x^4+a x^3+b x^2+c$ be a polynomial with real coefficients such that $f(1)=-9$. Suppose that $i \sqrt{3}$ is a root of the equation $4 x^3+3 a x^2+2 b x=0$, where $i=\sqrt{-1}$. If $\alpha_1, \alpha_2, \alpha_3$, and $\alpha_4$ are all the roots of the equation $f(x)=0$, then $\left|\alpha_1\right|^2+\left|\alpha_2\right|^2+\left|\alpha_3\right|^2+\left|\alpha_4\right|^2$ is equal to. . . . . .

  • [IIT 2024]

The equation $x^2-4 x+[x]+3=x[x]$, where $[x]$ denotes the greatest integer function, has:

  • [JEE MAIN 2023]

The number of real solutions of the equation $\mathrm{x}|\mathrm{x}+5|+2|\mathrm{x}+7|-2=0$ is .....................

  • [JEE MAIN 2024]