यदि $\alpha , \beta , \gamma $  समीकरण ${x^3} + a{x^2} + bx + c = 0$ के मूल हों, तो ${\alpha ^{ - 1}} + {\beta ^{ - 1}} + {\gamma ^{ - 1}} = $  

  • A

    $a/c$

  • B

    $-b/c$

  • C

    $b/a$

  • D

    $c/a$

Similar Questions

$x$ के उन सभी वास्तविक मानों का योग जो समीकरण $\left(x^{2}-5 x+5\right)^{x^{2}+4 x-60}=1$ को संतुष्ट करते हैं, है:

  • [JEE MAIN 2016]

यदि समीकरण $x^2-x-1=0$ के मूल $\alpha, \beta$ है तथा $\mathrm{S}_{\mathrm{n}}=2023 \alpha^{\mathrm{n}}+2024 \beta^n$ है, तो

  • [JEE MAIN 2024]

यदि व्यंजक $\left( {mx - 1 + \frac{1}{x}} \right)$ सदैव अऋणात्मक है तब $m$ का न्यूनतम मान होगा

एक रेलवे प्लेटफॉर्म की लंबाई $88$ मीटर है । प्लेटफॉर्म पर खड़े एक व्यक्ति ने देखा कि रेल गाड़ी को प्लेटफॉर्म को पूरी तरह पार करने में $21$ सेकंड लगे । इसका मतलब है कि इंजन के प्लेटफॉर्म पर प्रवेश करने से लेकर अंतिम डिब्बे के प्लेटफॉर्म छोड़े तक में बीता समय । उसने यह भी देखा कि रेल गाड़ी के उसे पार करने में $9$ सेकंड लगाए । यदि रेल गाड़ी एक समान गति से चल रही थी, तो रेल गाड़ी की लंबाई होगी (मीटर में)

  • [KVPY 2015]

यदि $a \in R$ तथा समीकरण $-3(x-[x])^{2}+2(x-[x])+a^{2}=0$

( जहाँ $[x]$ उस बड़े से बड़े पूर्णांक को दर्शाता है जो $\leq \, x$ है) का कोई पूर्णांकीय हल नहीं है, तो $a$ के सभी संभव मान जिस अंतराल में स्थित हैं, वह है:

  • [JEE MAIN 2014]