Gujarati
4-2.Quadratic Equations and Inequations
easy

यदि $\alpha , \beta , \gamma $  समीकरण ${x^3} + a{x^2} + bx + c = 0$ के मूल हों, तो ${\alpha ^{ - 1}} + {\beta ^{ - 1}} + {\gamma ^{ - 1}} = $  

A

$a/c$

B

$-b/c$

C

$b/a$

D

$c/a$

Solution

$\alpha , \beta , \gamma $ समीकरण

${x^3} + a{x^2} + bx + c = 0$ के मूल हैं

$\therefore $ $\alpha  + \beta  + \gamma  =  – a$, $\alpha \beta  + \beta \gamma  + \gamma \alpha  = b$ और $\alpha \beta \gamma  =  – \,c$

${\alpha ^{ – 1}} + {\beta ^{ – 1}} + {\gamma ^{ – 1}}$ $ = \frac{1}{\alpha } + \frac{1}{\beta } + \frac{1}{\gamma }$ $ = \frac{{\alpha \beta  + \beta \gamma  + \gamma \alpha }}{{\alpha \beta \gamma }}$

$ =  – b/c$.  

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.