समीकरण ${x^2} - 5|x| + \,6 = 0$ के हलों की संख्या है
$4$
$3$
$2$
$1$
माना $\alpha$ और $\beta$ समीकरण $5 x^{2}+6 x-2=0$ के मूल हैं यदि $S_{n}=\alpha^{n}+\beta^{n}, n=1,2,3, \ldots$, तो
यदि $\alpha , \beta , \gamma $ समीकरण ${x^3} + a{x^2} + bx + c = 0$ के मूल हों, तो ${\alpha ^{ - 1}} + {\beta ^{ - 1}} + {\gamma ^{ - 1}} = $
$x$ के मानों का समुच्चय जो कि $5x + 2 < 3x + 8$ तथा $\frac{{x + 2}}{{x - 1}} < 4$ को सन्तुष्ट करता है
कुछ धनात्मक पूर्णांक संख्याओं $a$ और $b$ के लिए यदि $t$ एक वास्तविक संख्या इस प्रकार है कि $t^2=a t+b$. तब किसी धनात्मक पूर्णांक $a$ और $b$ के लिए, $t^3$ निम्नलिखित में किसके बराबर नहीं है?
बहुपद समीकरण $x^4-x^2+2 x-1=0$ के वास्तविक मूलों की संख्या है: