7.Binomial Theorem
medium

यदि $A$ और $B$, ${(1 + x)^{2n}}$तथा ${(1 + x)^{2n - 1}}$ के विस्तारों में ${x^n}$ के गुणांक हैं, तब

A

$A = B$

B

$A = 2B$

C

$2A = B$

D

इनमें से कोई नहीं

Solution

${{(1 + x)}^{2n}}$(के प्रसार मे $x^n$ का गुणांक ) / ${{(1 + x)}^{2n – 1}}$ (के प्रसार मे $x^n$ का गुणांक) 

$ = \frac{{^{2n}{C_n}}}{{^{(2n – 1)}{C_n}}} = \frac{{(2n)!}}{{n!\,n!}} \times \frac{{(n – 1)!\,n!}}{{(2n – 1)!}}$

$ = \frac{{(2n)(2n – 1)!(n – 1)!}}{{n(n – 1)!\,\,(2n – 1)!}} = \frac{{2n}}{n} = 2:1$

==> $\frac{A}{B} = \frac{2}{1}$

==> $A = 2B$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.