7.Binomial Theorem
medium

જો ${\left( {x + \frac{1}{{{x^2}}}} \right)^{2n}},$ ના વિસ્તરણમાં ${x^m}$ નો સહગુણક મેળવો.

A

$\frac{{(2n)!}}{{(m)!\,(2n - m)!}}$

B

$\frac{{(2n)!\,3!\,3!}}{{(2n - m)!}}$

C

$\frac{{(2n)!}}{{\left( {\frac{{2n - m}}{3}} \right)\,!\,\left( {\frac{{4n + m}}{3}} \right)\,!}}$

D

એકપણ નહીં.

Solution

(c) ${T_{r + 1}} = {}^{2n}{C_r}{x^{2n – r}}{\left( {\frac{1}{{{x^2}}}} \right)^r}$

= ${}^{2n}{C_r}{x^{2n – 3r}},$

This contains $x^m$, if $2n -3r = m\ i.e$. if $r = \frac{{2n – m}}{3}$  

Coefficient of $x^m$ $ = {}^{2n}{C_r},$ $r = \frac{{2n – m}}{3}$ = $\frac{{2n!}}{{(2n – r)!r!}}$

=$ \frac{{2n!}}{{\left( {2n – \frac{{2n – m}}{3}} \right)\,\,!\left( {\frac{{2n – m}}{3}} \right)\,\,!}}$

= $\frac{{2n!}}{{\left( {\frac{{4n + m}}{3}} \right)\,\,!\,\,\left( {\frac{{2n – m}}{3}} \right)\,\,!}}$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.