જો $(1 + x)^n$ ના વિસ્તરણમાં કોઈ ત્રણ ક્રમિક પદોના સહગુણકનો ગુણોત્તર $1 : 7 : 42,$ હોય તો વિસ્તરણમાં આવેલા આ ત્રણ ક્રમિક પદોમાં પહેલું પદ કેટલામું હશે ?
$8^{th}$
$6^{th}$
$7^{th}$
$9^{th}$
ધારોકે $(1+2 x)^n$ ના દ્વિપદી વિસ્તરણમાં ત્રણ ક્રમિક પદોનાં સહગુણકો $2:5:8$ ના ગુણોત્તર માં છે. તો આ ત્રણ પદોની મધ્યમાં આવેલ પદનો સહગુણક $.........$ છે.
${\left( {\frac{x}{2} - \frac{3}{{{x^2}}}} \right)^{10}}$ ના વિસ્તરણમાં ${x^4}$ નો સહગુણક મેળવો.
$(x+a)^{n}$ ના વિસ્તરણમાં છેલ્લેથી $r$ મું પદ શોધો.
પ્રાકૃતિક સંખ્યા $m$ ની કઈ કિમત માટે $\left( x ^{ m }+\frac{1}{ x ^{2}}\right)^{22}$ ના વિસ્તરણમાં $x$ નો સહગુણક $1540$ થાય
${(1 + \alpha x)^4}$ અને ${(1 - \alpha x)^6}$ ના દ્રીપદી વિતરણમાં બંને ના મધ્યમપદમાં $x$ ના સહગુણક સમાન હોય તો $\alpha $ મેળવો.