यदि $n$ एक सम धनात्मक पूर्णांक है, तब ${(1 + x)^n}$ के प्रसार में महत्तम पद का गुणांक भी महत्तम हो, इसकी शर्त है
$\frac{n}{{n + 2}} < x < \frac{{n + 2}}{n}$
$\frac{{n + 1}}{n} < x < \frac{n}{{n + 1}}$
$\frac{n}{{n + 4}} < x < \frac{{n + 4}}{4}$
इनमें से कोई नहीं
${\left( {\sqrt x - \frac{2}{x}} \right)^{18}}$ में $x$ से स्वतंत्र पद है
${(x + a)^n}$ के द्विपद विस्तार में पदों ${x^{n - r}}{a^r}$ तथा ${x^r}{a^{n - r}}$ के गुणांको का अनुपात होगा
यदि $( x +1)^{ n }$ के $x$ की घातों में द्विपद प्रसार में कोई तीन क्रमागत गुणांक $2: 15: 70$ के अनुपात में है, तो इन तीन गुणांकों का औसत हैं
यदि धनात्मक पूर्णांकों $r > 1,n > 2$ के लिए ${(1 + x)^{2n}} $ के विस्तार में $x$ की $(3r)$ वीं तथा $(r + 2)$ वीं घांतों के गुणांक समान हों, तब
निम्नलिखित के प्रसार में व्यापक पद लिखिए
$\left(9 x-\frac{1}{3 \sqrt{x}}\right)^{18}$ के प्रसार में $13$ वाँ पद ज्ञात कीजिए।