यदि $a$ तथा $d$ दो सम्मिश्र संख्यायें हों, तब $a\,{C_0} - (a + d)\,{C_1} + (a + 2d)\,{C_2} - ........ + .....$ के $(n + 1)$ पदों का योग है
$\frac{a}{{{2^n}}}$
$na$
$0$
इनमें से कोई नहीं
यदि ${(1 + x)^n} = {C_0} + {C_1}x + {C_2}{x^2} + .... + {C_n}{x^n}$, तो ${C_0} + 2{C_1} + 3{C_2} + .... + (n + 1){C_n}$ का मान होगा
यदि गुणनफल $\left(1+ x + x ^{2}+\ldots+ x ^{2 n }\right)\left(1- x + x ^{2}\right.$ $\left.- x ^{3}+\ldots+ x ^{2 n }\right)$ में, $x$ के सभी सम-घातों वाले गुणाकों का योगफल $61$ है, तो $n$ बराबर ....... है |
माना $\sum_{\mathrm{r}=0}^{2023} \mathrm{r}^2{ }^{2023} \mathrm{C}_{\mathrm{r}}=2023 \times \alpha \times 2^{2022}$ है। तो $\alpha$ का मान है___________.
$\left( {\begin{array}{*{20}{c}}n\\0\end{array}} \right) + 2\,\left( {\begin{array}{*{20}{c}}n\\1\end{array}} \right) + {2^2}\left( {\begin{array}{*{20}{c}}n\\2\end{array}} \right) + ..... + {2^n}\left( {\begin{array}{*{20}{c}}n\\n\end{array}} \right)$ का मान होगा
यदि ${ }^{20} C _{1}+\left(2^{2}\right){ }^{20} C _{2}+\left(3^{2}\right){ }^{20} C _{3}+\ldots \ldots+$ $\left(20^{2}\right)^{20} C _{20}= A \left(2^{\beta}\right)$, तो क्रमित युग्म $( A , \beta)$ बराबर है