જો ${(1 + x)^n} = {C_0} + {C_1}x + {C_2}{x^2} + ... + {C_n}{x^n}$, તો ${C_0} + {C_2} + {C_4} + {C_6} + .....$ = . . .

  • A

    ${2^{n - 1}}$

  • B

    ${2^{n - 1}}$

  • C

    ${2^n}$

  • D

    ${2^{n - 1}} - 1$

Similar Questions

Let n and k be positive integers such that $n \ge \frac{{k(k + 1)}}{2}$. The number of solutions $({x_1},{x_2},....{x_k})$, ${x_1} \ge 1,{x_2} \ge 2,....{x_k} \ge k,$ all integers, satisfying ${x_1} + {x_2} + .... + {x_k} = n$, is

  • [IIT 1996]

${(1 + x)^n}$ ના વિસ્તરણમાં $x$ ની અયુગ્મ ઘાતાંકના સહગુણકનો સરવાળો મેળવો.

બહુપદી $(x-1) (x-2^1) (x-2^2) .... (x-2^{19})$ માં $x^{19}$ નો સહગુણક મેળવો 

 $(1+x)^{15}$ ના વિસ્તરણમાં છેલ્લા આઠ ક્રમિક પદોના સહગુણકનો સરવાળો મેળવો 

$\sum_{\substack{i, j=0 \\ i \neq j}}^{n}{ }^{n} C_{i}{ }^{n} C_{j}$ ની કિમંત મેળવો.

  • [JEE MAIN 2022]