7.Binomial Theorem
medium

यदि ${C_0},{C_1},{C_2},.......,{C_n}$ द्विपद गुणांक हो, तो $2.{C_1} + {2^3}.{C_3} + {2^5}.{C_5} + ....$ का $n$ पदों तक मान होगा

A

$\frac{{{3^n} + {{( - 1)}^n}}}{2}$

B

$\frac{{{3^n} - {{( - 1)}^n}}}{2}$

C

$\frac{{{3^n} + 1}}{2}$

D

$\frac{{{3^n} - 1}}{2}$

Solution

${(1 + x)^n} = {C_0} + {C_1}x + {C_2}{x^2} + {C_3}{x^3} + ….. + {C_n}{x^n}$

${(1 – x)^n} = {C_0} – {C_1}x + {C_2}{x^2} – {C_3}{x^3} + ….. + {( – 1)^n}{C_n}{x^n}$$[{(1 + x)^n} – {(1 – x)^n}] = 2\,[{C_1}x + {C_3}{x^3} + {C_5}{x^5} + …]$

$\frac{1}{2}[{(1 + x)^n} – {(1 – x)^n}] = {C_1}x + {C_3}{x^3} + {C_5}{x^5} + …….$

$x = 2$ रखने पर, $2.{C_1} + {2^3}.{C_3} + {2^5}.{C_5} + …..\, = \frac{{{3^n} – {{( – 1)}^n}}}{2}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.