3 and 4 .Determinants and Matrices
normal

यदि $A = \left[ {\begin{array}{*{20}{c}}1&1\\0&1\end{array}} \right],$$B = \left[ {\begin{array}{*{20}{c}}0&1\\1&0\end{array}} \right],$ तो $AB = $

A

$\left[ {\begin{array}{*{20}{c}}0&0\\0&0\end{array}} \right]$

B

$\left[ {\begin{array}{*{20}{c}}1&1\\1&0\end{array}} \right]$

C

$\left[ {\begin{array}{*{20}{c}}1&0\\0&1\end{array}} \right]$

D

$\left[ {\begin{array}{*{20}{c}}1&0\\0&1\end{array}} \right]$

Solution

(b)$A = \left[ {\begin{array}{*{20}{c}}1&1\\0&1\end{array}} \right],B = \left[ {\begin{array}{*{20}{c}}0&1\\1&0\end{array}} \right] \Rightarrow AB = \left[ {\begin{array}{*{20}{c}}1&1\\1&0\end{array}} \right]$.

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.