If $\tan A = \frac{1}{2},\tan B = \frac{1}{3},$ then $\cos 2A = $

  • A

    $\sin B$

  • B

    $\sin 2B$

  • C

    $\sin 3B$

  • D

    None of these

Similar Questions

If $\sin \theta + \sin 2\theta + \sin 3\theta = \sin \alpha $and $\cos \theta + \cos 2\theta + \cos 3\theta = \cos \alpha $, then $\theta$ is equal to

If $A + B + C = \pi ,$ then ${\tan ^2}\frac{A}{2} + {\tan ^2}\frac{B}{2} + $${\tan ^2}\frac{C}{2}$ is always

The value of $x$ that satisfies the relation $x = 1 - x + x^2 - x^3 + x^4 - x^5 + ......... \infty$

Prove that: $\frac{\sin 5 x+\sin 3 x}{\cos 5 x+\cos 3 x}=\tan 4 x$

The value of ,$\sqrt 3 \, cosec\, 20^o - sec\, 20^o $ is :