Prove that $\frac{\cos 7 x+\cos 5 x}{\sin 7 x-\sin 5 x}=\cot x$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

we get,

$L.H.S.$ $=\frac{2 \cos \frac{7 x+5 x}{2} \cos \frac{7 x-5 x}{2}}{2 \cos \frac{7 x+5 x}{2} \sin \frac{7 x-5 x}{2}}$

$=\frac{\cos x}{\sin x}=\cot x= R.H.S.$

Similar Questions

$\cos \frac{\pi }{7}\cos \frac{{2\pi }}{7}\cos \frac{{3\pi }}{7} =$

Prove that: $\cos 4 x=1-8 \sin ^{2} x \cos ^{2} x$

$\sin 4\theta $ can be written as

$4 \,\,sin5^o \,\,sin55^o \,\,sin65^o$ has the values equal to

If $\theta $ is an acute angle and $\sin \frac{\theta }{2} = \sqrt {\frac{{x - 1}}{{2x}}} $, then $\tan \theta $ is equal to