Prove that $\frac{\cos 7 x+\cos 5 x}{\sin 7 x-\sin 5 x}=\cot x$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

we get,

$L.H.S.$ $=\frac{2 \cos \frac{7 x+5 x}{2} \cos \frac{7 x-5 x}{2}}{2 \cos \frac{7 x+5 x}{2} \sin \frac{7 x-5 x}{2}}$

$=\frac{\cos x}{\sin x}=\cot x= R.H.S.$

Similar Questions

The value of $\sum_{r-1}^{18} cos^2(5r)^o,$  where $x^o $ denotes the $x$ degree, is equals to

If $\sin \theta + \cos \theta = x,$ then ${\sin ^6}\theta + {\cos ^6}\theta = \frac{1}{4}[4 - 3{({x^2} - 1)^2}]$ for

$\tan 75^\circ - \cot 75^\circ = $

The expression,$\frac{{\tan \,\left( {{\textstyle{{3\,\pi } \over 2}}\,\, - \,\,\alpha } \right)\,\,\,\cos \,\left( {{\textstyle{{3\,\pi } \over 2}}\,\, - \,\,\alpha } \right)}}{{\cos \,(2\,\pi \,\, - \,\alpha )}}$ $+ cos \left( {\alpha \,\, - \,\,\frac{\pi }{2}} \right) \,sin (\pi -\alpha ) + cos (\pi +\alpha ) sin \,\left( {\alpha \,\, - \,\,\frac{\pi }{2}} \right)$ when simplified reduces to :

If $\tan \frac{\theta }{2} = t,$then $\frac{{1 - {t^2}}}{{1 + {t^2}}}$is equal to