3.Trigonometrical Ratios, Functions and Identities
hard

The value of ${\cos ^2}\,{10^o}\,\, - \,\cos \,\,{10^o}\,\cos \,\,{50^o}\, + \,{\cos ^2}\,{50^o}$ is

A

$\frac{3}{2}\,(1\, + \,\cos \,{20^o})$

B

$\frac {3}{4}$

C

$\frac {3}{2}$

D

$\frac{3}{4}\,\, + \,\,\cos \,{20^o}$

(JEE MAIN-2019)

Solution

$\frac{1}{2}\,(2\,{\cos ^2}{10^o}\, – \,2\cos \,{10^o}\,\cos \,{50^o} + \,2\,{\cos ^2}{50^o})$

$ \Rightarrow \frac{1}{2}\,(1 + \,\cos \,{20^o} – (\cos \,{60^o} + \cos \,{40^o})\, + 1 + \,\,\cos {100^o})$

$ \Rightarrow \frac{1}{2}\,\left( {\frac{3}{2} + \,\cos \,{{20}^o} + 2\sin \,{{70}^o}\sin \,( – {{30}^o})} \right)$

$ \Rightarrow \frac{1}{2}\,\left( {\frac{3}{2} + \,\cos \,{{20}^o} – \sin \,{{70}^o}} \right)$

$ \Rightarrow \frac{3}{4}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.